Charge Puddles in Graphene near the Dirac Point.
نویسندگان
چکیده
The charge carrier density in graphene on a dielectric substrate such as SiO_{2} displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge neutrality, a markedly distinct property from conventional two-dimensional electron gases. By performing scanning tunneling microscopy and spectroscopy on a mesoscopic graphene device, we directly observe the puddles' growth, both in spatial extent and in amplitude, as the Fermi level approaches the Dirac point. Self-consistent screening theory provides a unified description of both the macroscopic transport properties and the microscopically observed charge disorder.
منابع مشابه
Observation of electron–hole puddles in graphene using a scanning single-electron transistor
The electronic structure of graphene causes its charge carriers to behave like relativistic particles. For a perfect graphene sheet free from impurities and disorder, the Fermi energy lies at the so-called ‘Dirac point’, where the density of electronic states vanishes. But in the inevitable presence of disorder, theory predicts that equally probable regions of electron-rich and hole-rich puddle...
متن کاملApproaching ballistic transport in suspended graphene.
The discovery of graphene raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. Ho...
متن کاملScanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride.
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low-density region at the Dirac point has been difficult because of disorder that leaves the graphene with local microscopic electron and hole puddles...
متن کاملSTM Spectroscopy of ultra-flat graphene on hexagonal boron nitride
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point[1, 2]. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic el...
متن کاملSilicon nitride gate dielectrics and band gap engineering in graphene layers.
We show that silicon nitride can provide uniform coverage of graphene in field-effect transistors while preserving the channel mobility. This insulator allowed us to study the maximum channel resistance at the Dirac (neutrality) point as a function of the strength of a perpendicular electric field in top-gated devices with different numbers of graphene layers. Using a simple model to account fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 116 12 شماره
صفحات -
تاریخ انتشار 2016